Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Investigation on the thermal effects during nanometric cutting process while using nanoscale diamond tools

Tong, Zhen and Liang, Yingchun and Yang, Xuechun and Luo, Xichun (2014) Investigation on the thermal effects during nanometric cutting process while using nanoscale diamond tools. International Journal of Advanced Manufacturing Technology, 74 (9-12). pp. 1709-1718. ISSN 0268-3768

Text (Tong-etal-IJAMT2014-Thermal-effects-during-nanometric-cutting-process)
Accepted Author Manuscript

Download (2MB) | Preview


In this paper, large scale molecular dynamics simulations are carried out to investigate the thermal effect on nanometric cutting of copper while using a single tip and a multi-tip nanoscale diamond tool. A new concept of atomistic equivalent temperature is proposed and used to characterize the temperature distribution in the cutting zone. The results show that the cutting heat generated while using a multi-tip tool is larger than that of using a single tip tool. The local temperature is found to be higher at the inner sides of the multi-tip tool cutting edges than the outer sides. Applying centro-symmetry parameters and radius distribution function, the local annealing process and its effect on the integrity of the machined nanostructures are analyzed. It is observed that the local annealing at the machined surface can improve the surface integrity of the machined nanostructures, especially in the multi-tip diamond tool cutting process. There exists a great potential to control the thickness of residual atomic defect layer through an optimal selection of the cutting speed with designed depth of cut.