Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Threat analysis of IoT networks using artificial neural network intrusion detection system

Hodo, Elike Komi and Bellekens, Xavier and Hamilton, Andrew and Dubouilh, Pierre-Louis and Iorkyase, Ephraim Tersoo and Tachtatzis, Christos and Atkinson, Robert (2016) Threat analysis of IoT networks using artificial neural network intrusion detection system. In: International Symposium on Networks, Computers and Communications, 2016-05-11 - 2016-05-13, Tunisia.

[img]
Preview
Text (Hodo-etal-ISNCC-2016-Threat-analysis-of-IoT-networks-using-artificial-neural)
Hodo_etal_ISNCC_2016_Threat_analysis_of_IoT_networks_using_artificial_neural.pdf
Accepted Author Manuscript

Download (601kB) | Preview

Abstract

The Internet of things (IoT) network is still in its infancy and has attracted much interest in many industrial sectors including medical fields, logistics tracking, smart cities and automobiles. However as a paradigm, it is susceptible to a range of significant intrusion threats. This paper presents a threat analysis of the IoT and uses an Artificial Neural Network (ANN) to combat these threats. A multi-level perceptron, a type of supervised ANN, is trained using an IoT Data set, then is assessed on its ability to thwart Distributed Denial of Service (DDoS/DoS) attacks. This paper focuses on the classification of normal and threat patterns on an IoT Network. The ANN procedure is validated against a simulated IoT network. The experimental results demonstrate 99.4% accuracy and can successfully detect various DDoS/DoS attacks.