Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Non-functional biomimicry : utilising natural patterns to provoke attention responses

Young, Bryan G. and Wodehouse, Andrew (2017) Non-functional biomimicry : utilising natural patterns to provoke attention responses. International Journal of Design Creativity and Innovation, 6 (1-2). pp. 36-51. ISSN 2165-0349

[img]
Preview
Text (Young-Wodehouse-HF-2016-non-functional-biomimicry)
Young_Wodehouse_HF_2016_non_functional_biomimicry.pdf
Accepted Author Manuscript

Download (910kB) | Preview

Abstract

Natural reoccurring patterns arise from chaos and are prevalent throughout nature. The formation of these patterns is controlled by, or produces, underlying geometrical structures. Biomimicry is the study of nature’s structure, processes and systems, as models and solutions for design challenges and is being widely utilized in order to address many issues of contemporary engineering. Many academics now believe that aesthetics stem from pattern recognition, consequently, aesthetic preference may be a result of individuals recognising, and interacting with, natural patterns. The goal of this research was to investigate the impact of specific naturally occurring pattern types (spiral, branching, and fractal patterns) on user behaviour; investigating the potential of such patterns to control and influence how individuals interact with their surrounding environment. The results showed that the underlying geometry of natural patterns has the potential to induce attention responses to a statistically significant level.