Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Controller HIL testing of real-time distributed frequency control for future power systems

Guillo-Sansano, E. and Syed, M.H. and Roscoe, A.J. and Burt, G. and Stanovich, Mark and Schoder, Karl (2016) Controller HIL testing of real-time distributed frequency control for future power systems. In: 2016 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe). IEEE, Piscataway, NJ.. ISBN 9781509033584

[img]
Preview
Text (Guillo-Sansano-etal-ISGT2016-Controller-HIL-testing-of-real-time-distributed-frequency-control)
Guillo_Sansano_etal_ISGT2016_Controller_HIL_testing_of_real_time_distributed_frequency_control.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

With the evolution of power system components and structures driven mainly by renewable energy technologies, reliability of the network could be compromised with traditional control methodologies. Therefore, it is crucial to thoroughly validate and test future power system control concepts before deployment. In this paper, a Controller Hardware in the Loop (CHIL) simulation for a real-time distributed control algorithm concept developed within the ELECTRA IRP project is performed. CHIL allows exploration of many real-world issues such as noise, randomness of event timings, and hardware design issues that are often not present on a simulation-only system. Octave has been used as the programming language of the controller in order to facilitate the transition between software simulation and real-time control testing. The distributed controller achieved frequency restoration with a collaborative response between different controllers very fast after the unbalanced area is located.