Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

LIDAR-assisted wind turbine gain scheduling control for load reduction

Bao, Jie and Yue, Hong and Leithead, William E. and Wang, Jiqiang (2016) LIDAR-assisted wind turbine gain scheduling control for load reduction. In: 2016 22nd International Conference on Automation and Computing (ICAC). IEEE, pp. 1-6. ISBN 978-1-86218-132-8

[img]
Preview
Text (Bao-etal-ICAC-2016-LIDAR-assisted-wind-turbine-gain-scheduling-control)
Bao_etal_ICAC_2016_LIDAR_assisted_wind_turbine_gain_scheduling_control.pdf
Accepted Author Manuscript

Download (588kB)| Preview

    Abstract

    A gain-scheduled feedforward controller employing pseudo-LIDAR wind measurement is designed to augment the baseline feedback controller for wind turbine load reduction during above rated operation. The feedforward controller is firstly designed based on a linearised wind turbine model at one specific wind speed, then expanded for full above rated operational envelope with gain scheduling. The wind evolution model is established using the pseudo-LIDAR measurement data which is generated from Bladed using a designed sampling strategy. The combined feedforward and baseline control system is simulated on a 5MW industrial wind turbine model developed at Strathclyde University. Simulation results demonstrate that the gain scheduling feedforward control strategy can improve the rotor and tower load reduction performance for large wind turbines.