Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Experimental determination of added hydrodynamic resistance caused by marine biofouling on ships

Turan, Osman and Demirel, Yigit Kemal and Day, Sandy and Tezdogan, Tahsin (2016) Experimental determination of added hydrodynamic resistance caused by marine biofouling on ships. In: 6th European Transport Research Conference, 2016-04-18 - 2016-04-21.

[img]
Preview
Text (Turan-etal-TRA2016-experimental-determination-added-hydrodynamic-resistance-caused-marine-biofouling)
Turan_etal_TRA2016_experimental_determination_added_hydrodynamic_resistance_caused_marine_biofouling.pdf
Accepted Author Manuscript

Download (393kB) | Preview

Abstract

An extensive series of towing tests using flat plates covered with artificial barnacles were carried out at the Kelvin Hydrodynamics Laboratory (KHL) at the University of Strathclyde. The tests were designed to examine the effect of the coverage percentage of barnacles on the resistance and effective power of ships, over a range of Reynolds numbers. This paper presents the added resistances due to calcareous fouling in terms of the added frictional resistance coefficient for a surface coverage of fouling of up to 20%, over different speeds (Reynolds numbers). The drag coefficients and roughness function values of each surface were evaluated. Roughness effects of the given fouling conditions on the frictional resistances of an LNG tanker were then predicted for different ship speeds using an in-house code which was developed based on the similarity law analysis of Granville (1958). Added resistance diagrams were then plotted using these predictions. Finally, powering penalties of the LNG tanker were predicted using the generated diagrams.