Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Optimization of ozone generation by investigation of filament current characteristics under dielectric barrier discharge

Zhou, Yingjia and Huang, Guangming and Wang, Tao and MacGregor, Scott J. and Wilson, Mark P. and Timoshkin, Igor V. and Given, Martin J. and Ren, Qing Chun (2016) Optimization of ozone generation by investigation of filament current characteristics under dielectric barrier discharge. IEEE Transactions on Plasma Science, 44 (10). 2129 - 2136. ISSN 0093-3813

[img]
Preview
Text (Zhou-etal-IEEE-TPS-2016-Optimization-of-ozone-generation-by-investigation-of-filament-current-characteristics)
Zhou_etal_IEEE_TPS_2016_Optimization_of_ozone_generation_by_investigation_of_filament_current_characteristics.pdf
Accepted Author Manuscript

Download (3MB) | Preview

Abstract

In this paper, a new method to analyse Lissajous figures is developed. The model takes stray capacitance into account, leading to a more accurate equivalent circuit to describe the conditions during a discharge event. Using this method, the external measured current and the relationship between the filament current and the external current can be determined. The model also allows for calculation of the relationship between reduced electric field and ozone efficiency. In this paper, an optimized efficiency of ~207 g/kWh was achieved, at ~123 Td. The relationship between external current and ozone efficiency was also determined by changing gas pressure and barrier thickness. It was found that with increasing barrier thickness and increasing pressure, the ozone efficiency increased, while the external current decreased. The highest ozone efficiency achieved was ~225 g/kWh.