Improved performance low-cost incremental conductance PV MPPT technique
Zakzouk, Nahla E. and Elsaharty, Mohamed A. and Abdelsalam, Ahmed K. and Helal, Ahmed A. and Williams, Barry W. (2016) Improved performance low-cost incremental conductance PV MPPT technique. IET Renewable Power Generation, 10 (4). pp. 561-574. ISSN 1752-1416 (https://doi.org/10.1049/iet-rpg.2015.0203)
Preview |
Text.
Filename: Zakzouk_etal_IETRPG2016_Improved_performance_low_cost_incremental_conductance_PV_MPPT_technique.pdf
Accepted Author Manuscript Download (1MB)| Preview |
Abstract
Variable-step incremental conductance (Inc.Cond.) technique, for photovoltaic (PV) maximum power point tracking, has merits of good tracking accuracy and fast convergence speed. Yet, it lacks simplicity in its implementation due to the mathematical division computations involved in its algorithm structure. Furthermore, the conventional variable step-size, based on the division of the PV module power change by the PV voltage change, encounters steadystate power oscillations and dynamic problems especially under sudden environmental changes. In this study, an enhancement is introduced to Inc.Cond. algorithm in order to entirely eliminate the division calculations involved in its structure. Hence, algorithm implementation complexity is minimised enabling the utilisation of low-cost microcontrollers to cut down system cost. Moreover, the required real processing time is reduced, thus sampling rate can be improved to fasten system response during sudden changes. Regarding the applied step-size, a modified variable-step size, which depends solely on PV power, is proposed. The latter achieves enhanced transient performance with minimal steady-state power oscillations around the MPP even under partial shading. For proposed technique's validation, simulation work is carried out and an experimental set up is implemented in which ARDUINO Uno board, based on low-cost Atmega328 microcontroller, is employed.
-
-
Item type: Article ID code: 56666 Dates: DateEvent1 April 2016Published1 October 2015AcceptedNotes: This paper is a postprint of a paper submitted to and accepted for publication in IET Renewable Power Generation and is subject to Institution of Engineering and Technology Copyright. The copy of record is available at IET Digital Library. Subjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 15 Jun 2016 13:41 Last modified: 11 Nov 2024 11:24 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/56666