Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Word-representability of triangulations of grid-covered cylinder graphs

Chen, Herman Z.Q. and Kitaev, Sergey and Sun, Brian Y. (2016) Word-representability of triangulations of grid-covered cylinder graphs. Discrete Applied Mathematics. ISSN 0166-218X (In Press)

[img]
Preview
Text (Chen-etal-DAM2016-Word-representability-of-triangulations-of-grid-covered-cylinder-graphs)
Chen_etal_DAM2016_Word_representability_of_triangulations_of_grid_covered_cylinder_graphs.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (237kB) | Preview

Abstract

A graph G=(V,E) is word-representable if there exists a word w over the alphabet V such that letters x and y, x ≠ y, alternate in w if and only if (x,y) ∈ E. Halldórsson, Kitaev and Pyatkin have shown that a graph is word-representable if and only if it admits a so-called semi-transitive orientation. A corollary of this result is that any 3-colorable graph is word-representable. Akrobotu, Kitaev and Masàrovà have shown that a triangulation of a grid graph is word-representable if and only if it is 3-colorable. This result does not hold for triangulations of grid-covered cylinder graphs; indeed, there are such word-representable graphs with chromatic number 4. In this paper we show that word-representability of triangulations of grid-covered cylinder graphs with three sectors (resp., more than three sectors) is characterized by avoiding a certain set of six minimal induced subgraphs (resp., wheel graphs W5 and W7).