Picture water droplets

Developing mathematical theories of the physical world: Open Access research on fluid dynamics from Strathclyde

Strathprints makes available Open Access scholarly outputs by Strathclyde's Department of Mathematics & Statistics, where continuum mechanics and industrial mathematics is a specialism. Such research seeks to understand fluid dynamics, among many other related areas such as liquid crystals and droplet evaporation.

The Department of Mathematics & Statistics also demonstrates expertise in population modelling & epidemiology, stochastic analysis, applied analysis and scientific computing. Access world leading mathematical and statistical Open Access research!

Explore all Strathclyde Open Access research...

Visible light communication using InGaN optical sources with AlInGaP nanomembrane downconverters

Santos, J. M. M. and Rajbhandari, S. and Tsonev, D. and Chun, H. and Guilhabert, B. and Krysa, A. B. and Kelly, A. E. and Haas, H. and O'Brien, D. C. and Laurand, N. and Dawson, M. D. (2016) Visible light communication using InGaN optical sources with AlInGaP nanomembrane downconverters. Optics Express, 24 (9). pp. 10020-10029. ISSN 1094-4087

Text (Santos-etal-OE-2016-Visible-light-communication-using-InGaN-optical-sources)
Accepted Author Manuscript

Download (604kB) | Preview


We report free space visible light communication using InGaN sources, namely micro-LEDs and a laser diode, down-converted by a red emitting AlInGaP multi-quantum-well nanomembrane. In the case of micro-LEDs, the AlInGaP nanomembrane is capillary-bonded between the sapphire window of a micro-LED array and a hemispherical sapphire lens to provide an integrated optical source. The sapphire lens improves the extraction efficiency of the color-converted light. For the case of the downconverter laser diode, one side of the nanomembrane is bonded to a sapphire lens and the other side optionally onto a dielectric mirror; this nanomembrane-lens structure is remotely excited by the laser diode. Data transmission up to 870 Mb/s using pulse amplitude modulation (PAM) with fractionally spaced decision feedback equalizer is demonstrated for the micro-LED-integrated nanomembrane. A data rate of 1.2 Gb/s is achieved using orthogonal frequency division multiplexing (ODFM) with the laser