Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Nanoparticles of Cu2ZnSnS4 as performance enhancing additives for organic field-effect transistors

Kevin, Punarja and Malik, Mohammad Azad and O'Brien, Paul and Cameron, Joseph and Taylor, Rupert G. D. and Findlay, Neil J. and Inigo, Anto R. and Skabara, Peter J. (2016) Nanoparticles of Cu2ZnSnS4 as performance enhancing additives for organic field-effect transistors. Journal of Materials Chemistry. C, 4 (22). pp. 5109-5115. ISSN 2050-7526

[img]
Preview
Text (Kevin-etal-JMCC-2016-Nanoparticles-of-Cu2ZnSnS4-as-performance-enhancing-additives)
Kevin_etal_JMCC_2016_Nanoparticles_of_Cu2ZnSnS4_as_performance_enhancing_additives.pdf - Final Published Version
License: Creative Commons Attribution 3.0 logo

Download (6MB) | Preview

Abstract

The addition of oleylamine coated Cu2ZnSnS4 (CZTS) nanoparticles to solutions of an organic semiconductor used to fabricate organic field-effect transistors (OFETs) has been investigated. The oligothiophene-based small molecule 5T-TTF and the polymer poly(3-hexylthiophene) (P3HT) were each applied in the transistors with various concentrations of CZTS (5-20%). Atomic force microscopy (AFM) was applied to characterise the surface morphology of the OFETs. The use of 5 and 10 wt% of the CZTS nanoparticles in 5T-TTF and P3HT solutions, respectively, appears to be a simple and effective way of improving OFET performance.