Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Miniature nitro and peroxide vapor sensors using nanoporous thin films

Blue, Robert and Thomson, Neil and Taylor, Stewart J. and Fletcher, Ashleigh J. and Skabara, Peter J. and Uttamchandani, Deepak (2016) Miniature nitro and peroxide vapor sensors using nanoporous thin films. IEEE Sensors Journal, 16 (24). pp. 8767-8774. ISSN 1530-437X

[img]
Preview
Text (Blue-etal-IEEE-SJ-2016-Miniature-nitro-and-peroxide-vapor-sensors)
Blue_etal_IEEE_SJ_2016_Miniature_nitro_and_peroxide_vapor_sensors.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

With the increased and continuous threat of terrorist attacks in public areas, new sensors are required to safeguard the public from home-made explosive devices. Current commercial sensors for explosive vapors are high-cost, bulky equipment not amenable to mass production, thus limiting their widespread deployment within society. We are conducting research on polymer-based microsensors that can overcome these limitations. Our devices offer an approach to the realization of low-cost sensors that can readily be placed as a network of electronic sentinels that can be permanently located in areas of public access. The polymers are chemically tailored to have a high affinity for nitro and peroxide vapors and are grown electrochemically on microelectrodes. Novel nanoporous polymer-based sensors are demonstrated with a detection level of 200 ppb of nitro vapors. In addition, a prototype reversible sensor for peroxide vapors is demonstrated to low ppm concentrations.