Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes

Stokes, CA and Kaur, R and Edwards, MR and Mondhe, M and Robinson, D and Prestwich, EC and Hume, RD and Marshall, CA and Perrie, Y and O'Donnell, VB and Harwood, JL and Sabroe, I and Parker, LC (2016) Human rhinovirus-induced inflammatory responses are inhibited by phosphatidylserine containing liposomes. Mucosal Immunology. ISSN 1933-0219

[img]
Preview
Text (Stokes-etal-MI-2016-Human-rhinovirus-induced-inflammatory-responses-are-inhibited)
Stokes_etal_MI_2016_Human_rhinovirus_induced_inflammatory_responses_are_inhibited.pdf
Final Published Version
License: Creative Commons Attribution-NonCommercial-ShareAlike 4.0 logo

Download (2MB) | Preview

Abstract

Human rhinovirus (HRV) infections are major contributors to the healthcare burden associated with acute exacerbations of chronic airway disease, such as chronic obstructive pulmonary disease and asthma. Cellular responses to HRV are mediated through pattern recognition receptors that may in part signal from membrane microdomains. We previously found Toll-like receptor signaling is reduced, by targeting membrane microdomains with a specific liposomal phosphatidylserine species, 1-stearoyl-2-arachidonoyl-sn-glycero-3-phospho-L-serine (SAPS). Here we explored the ability of this approach to target a clinically important pathogen. We determined the biochemical and biophysical properties and stability of SAPS liposomes and studied their ability to modulate rhinovirus-induced inflammation, measured by cytokine production, and rhinovirus replication in both immortalized and normal primary bronchial epithelial cells. SAPS liposomes rapidly partitioned throughout the plasma membrane and internal cellular membranes of epithelial cells. Uptake of liposomes did not cause cell death, but was associated with markedly reduced inflammatory responses to rhinovirus, at the expense of only modest non-significant increases in viral replication, and without impairment of interferon receptor signaling. Thus using liposomes of phosphatidylserine to target membrane microdomains is a feasible mechanism for modulating rhinovirus-induced signaling, and potentially a prototypic new therapy for viral-mediated inflammation.Mucosal Immunology advance online publication, 24 February 2016; doi:10.1038/mi.2015.137.