Multi-band asymmetric piezoelectric MEMS microphone inspired by the Ormia Ochracea

Zhang, Yansheng and Bauer, Ralf and Windmill, James F. C. and Uttamchandani, Deepak; (2016) Multi-band asymmetric piezoelectric MEMS microphone inspired by the Ormia Ochracea. In: 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS). IEEE, CHN, 1114 - 1117. ISBN 978-1-5090-1973-1

[thumbnail of Zhang-etal-IEEEMEMS2016-multi-band-asymmetric-piezoelectric-MEMS-microphone-inspired-Ormia-Ochracea]
Text (Zhang-etal-IEEEMEMS2016-multi-band-asymmetric-piezoelectric-MEMS-microphone-inspired-Ormia-Ochracea)
Accepted Author Manuscript

Download (863kB)| Preview


    A multi-band piezoelectric directional MEMS microphone is demonstrated based on a bio-mimetic design inspired by the parasitoid fly Ormia ochracea, using the PiezoMUMPs multi-user foundry process. The device achieves a directional sound field response within four frequency bands, all lying below 15 kHz. It acts as a pressure gradient microphone with hyper-cardioid polar patterns in all frequency bands, with the measured mechanical sensitivity being in good agreement with acoustic-structural simulations conducted in COMSOL Multiphysics. The maximum experimentally measured acoustic sensitivity of the device is 19.7 mV/Pa, located at a frequency of 7972 Hz and sound incidence normal to the microphone membrane.

    ORCID iDs

    Zhang, Yansheng, Bauer, Ralf ORCID logoORCID:, Windmill, James F. C. ORCID logoORCID: and Uttamchandani, Deepak ORCID logoORCID:;