Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Standardless, automated determination of Chlorine-35 by 35Cl nuclear magnetic resonance

Watson, Simon A. and Edwards, Andy J. and Parkinson, John A. (2016) Standardless, automated determination of Chlorine-35 by 35Cl nuclear magnetic resonance. Analytical Letters, 50 (1). pp. 161-172. ISSN 0003-2719

[img]
Preview
Text (Watson-etal-AL-2016-standardless-automated-determination-of-Chlorine-35-by-35Cl-nuclear-magnetic-resonance)
Watson_etal_AL_2016_standardless_automated_determination_of_Chlorine_35_by_35Cl_nuclear_magnetic_resonance.pdf
Accepted Author Manuscript

Download (806kB) | Preview

Abstract

A robust, fully automated, walk-up method is reported to quantify chloride in samples using 35Cl nuclear magnetic resonance. Minimal user input is required, no standards are acquired at the time of analysis; and the submission, acquisition, processing, and production of results are seamlessly integrated within existing software. The method demonstrated good linearity with R2 = 0.999 over three orders of magnitude of analyte concentration. The results were highly independent of analyte functionality, and the stability of instrument response was sufficient that analyses of additional standards were not required for a period of several months. At a nominal sample concentration of 10 mg/ml in D2O at 400 MHz, detection and quantitation limits of 0.1 and 0.5% (w/w) were achieved in a 1-h analysis time. Robust methodology was achieved by applying a rigorous approach to method development and validation to determine and evaluate fully the time- and sample-dependent factors that affect quantitation in these measurements.