Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Effects of thermal recycling temperatures on the reinforcement potential of glass fibers

Nagel, U. and Yang, L. and Kao, C. C. and Thomason, J. L. (2016) Effects of thermal recycling temperatures on the reinforcement potential of glass fibers. Polymer Composites. ISSN 0272-8397

[img]
Preview
Text (Nagel-etal-PC2016-effects-thermal-recycling-temperatures-reinforcement-potential-glass-fibers)
Nagel_etal_PC2016_effects_thermal_recycling_temperatures_reinforcement_potential_glass_fibers.pdf
Accepted Author Manuscript

Download (1MB)| Preview

    Abstract

    In the present work the reinforcement potential of thermally recycled glass fibers in injection molded Polypropylene (PP) composites was investigated. Microbond tests showed that fiber sizing lost its compatibility to the PP matrix after exposure to temperatures of 250 °C in air. The drop of the adhesion between fibers and PP was mirrored by a large reduction of the tensile strength of the injection molded PP composites. In inert atmosphere the degradation of the fiber sizing and the reduction of the IFSS were less rapid than in air but no significant difference was observed above 400 °C. It was concluded that thermally recycled glass fibers will require a post-treatment to act as an effective reinforcement in injection molded PP composites even if the thermal recycling was performed in an inert atmosphere. The post-treatment will need to improve the compatibility of the fibers to the polymer matrix and the fiber strength.