Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

On the electrostatics of DNA in chromatin

Bohinc, Klemen and Lue, Leo (2016) On the electrostatics of DNA in chromatin. AIMS Biophysics, 3 (1). pp. 75-87. ISSN 2377-9098

Text (Bohinc-Lue-B2016-on-the-electrostatics-of-dna-in-chromatin)
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (177kB) | Preview


We examine the interaction between DNA molecules immersed in an aqueous solution of oppositely charged, trivalent spermidine molecules. The DNA molecules are modeled as planar, likecharged surfaces immersed in an aqueous solution of multivalent, rod-like ions consisting of rigidly bonded point charges. An approximate field theory is used to determine the properties of this system from the weak to the intermediate through to the strong coupling regimes. In the weak coupling limit, the interaction between the charged surfaces is only repulsive, whereas in the intermediate coupling regime, the rod-like ions with spatial charge distribution can induce attractive force between the charged surfaces. In the strong coupling limit, the inter-ionic charge correlations induce attractive interaction at short separations between the surfaces. This theoretical study can give new insights in the problem of interaction between DNA molecules mediated by trivalent spermidine molecules.