Avoiding vincular patterns on alternating words
Gao, Alice L.L. and Kitaev, Sergey and Zhang, Philip B. (2016) Avoiding vincular patterns on alternating words. Discrete Mathematics, 339. pp. 2079-2093. ISSN 0012-365X
Preview |
Text.
Filename: Gao_Kitaev_Zhang_DM2016_avoiding_vincular_patterns_on_alternating_words.pdf
Accepted Author Manuscript Download (141kB)| Preview |
Abstract
A word $w=w_1w_2\cdots w_n$ is alternating if either $w_1<w_2>w_3<w_4>\cdots$ (when the word is up-down) or $w_1>w_2<w_3>w_4<\cdots$ (when the word is down-up). The study of alternating words avoiding classical permutation patterns was initiated by the authors in~\cite{GKZ}, where, in particular, it was shown that 123-avoiding up-down words of even length are counted by the Narayana numbers.However, not much was understood on the structure of 123-avoiding up-down words. In this paper, we fill in this gap by introducing the notion of a cut-pair that allows us to subdivide the set of words in question into equivalence classes. We provide a combinatorial argument to show that the number of equivalence classes is given by the Catalan numbers, which induces an alternative (combinatorial) proof of the corresponding result in~\cite{GKZ}.Further, we extend the enumerative results in~\cite{GKZ} to the case of alternating words avoiding a vincular pattern of length 3. We show that it is sufficient to enumerate up-down words of even length avoiding the consecutive pattern $\underline{132}$ and up-down words of odd length avoiding the consecutive pattern $\underline{312}$ to answer all of our enumerative questions. The former of the two key cases is enumerated by the Stirling numbers of the second kind.
ORCID iDs
Gao, Alice L.L., Kitaev, Sergey ORCID: https://orcid.org/0000-0003-3324-1647 and Zhang, Philip B.;-
-
Item type: Article ID code: 55630 Dates: DateEvent2016Published22 February 2016AcceptedNotes: Accepted for publication on 14.03.2016 Subjects: UNSPECIFIED Department: Faculty of Science > Computer and Information Sciences Depositing user: Pure Administrator Date deposited: 22 Feb 2016 13:57 Last modified: 11 Nov 2024 11:20 URI: https://strathprints.strath.ac.uk/id/eprint/55630