Picture of smart phone

Open Access research that is better understanding human-computer interaction...

Strathprints makes available scholarly Open Access content by researchers in the Department of Computer & Information Sciences, including those researching information retrieval, information behaviour, user behaviour and ubiquitous computing.

The Department of Computer & Information Sciences hosts The Mobiquitous Lab, which investigates user behaviour on mobile devices and emerging ubiquitous computing paradigms. The Strathclyde iSchool Research Group specialises in understanding how people search for information and explores interactive search tools that support their information seeking and retrieval tasks, this also includes research into information behaviour and engagement.

Explore the Open Access research of The Mobiquitous Lab and the iSchool, or theDepartment of Computer & Information Sciences more generally. Or explore all of Strathclyde's Open Access research...

Human upper limb motion analysis for post-stroke impairment assessment using video analytics

Yang, Cheng and Kerr, Andrew and Stankovic, Vladimir and Stankovic, Lina and Rowe, Philip and Cheng, Samuel (2016) Human upper limb motion analysis for post-stroke impairment assessment using video analytics. IEEE Access, 4. pp. 650-659.

[img]
Preview
Text (Yang-IEEEA2016-human-upper-limb-motion-analysis-for-post-stroke-impairment-assessment)
Yang_IEEEA2016_human_upper_limb_motion_analysis_for_post_stroke_impairment_assessment.pdf
Final Published Version

Download (28MB) | Preview

Abstract

Stroke is a worldwide healthcare problem which often causes long-term motor impairment, handicap, and disability. Optical motion analysis systems are commonly used for impairment assessment due to high accuracy. However, the requirement of equipment-heavy and large laboratory space together with operational expertise, makes these systems impractical for local clinic and home use. We propose an alternative, cost-effective and portable, decision support system for optical motion analysis, using a single camera. The system relies on detecting and tracking markers attached to subject's joints, data analytics for calculating relevant rehabilitation parameters, visualization, and robust classification based on graph-based signal processing. Experimental results show that the proposed decision support system has the potential to offer stroke survivors and clinicians an alternative, affordable, accurate and convenient impairment assessment option suitable for home healthcare and tele-rehabilitation.