Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Conductivity and redox stability of new double perovskite oxide Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6)

Cowin, Peter I. and Lan, Rong and Petit, Christophe T G and Wang, Huanting and Tao, Shanwen (2016) Conductivity and redox stability of new double perovskite oxide Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6). Journal of Materials Science, 51 (8). pp. 4115-4124. ISSN 0022-2461

[img]
Preview
Text (Cowin-etal-JMS2016-conductivity-and-redox-stability-of-new-double-perovskite-oxide)
Cowin_etal_JMS2016_conductivity_and_redox_stability_of_new_double_perovskite_oxide.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (1MB)| Preview

    Abstract

    A series of new perovskite oxides Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) were synthesised by solid state reaction method. Synthesis of Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) was achieved above 700 °C in 5 % H2/Ar, albeit with the formation of impurity phases. Phase stability upon redox cycling was only observed for sample Sr1.6K0.4Fe1.4Mo0.6O6−δ. Redox cycling of Sr1.6K0.4Fe1+xMo1−xO6−δ (x = 0.2, 0.4, 0.6) demonstrates a strong dependence on high temperature reduction to achieve high conductivities. After the initial reduction at 1200 °C in 5 %H2/Ar, then re-oxidation in air at 700 °C and further reduction at 700 °C in 5 %H2/Ar, the attained conductivities were between 0.1 and 58.4 % of the initial conductivity after reduction 1200 °C in 5 %H2/Ar depending on the composition. In the investigated new oxides, sample Sr1.6K0.4Fe1.4Mo0.6O6−δ is most redox stable also retains reasonably high electrical conductivity, ~70 S/cm after reduction at 1200 °C and 2–3 S/cm after redox cycling at 700 °C, indicating it is a potential anode for SOFCs.