Picture of virus

Open Access research that helps to deliver "better medicines"...

Strathprints makes available scholarly Open Access content by the Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS), a major research centre in Scotland and amongst the UK's top schools of pharmacy.

Research at SIPBS includes the "New medicines", "Better medicines" and "Better use of medicines" research groups. Together their research explores multidisciplinary approaches to improve understanding of fundamental bioscience and identify novel therapeutic targets with the aim of developing therapeutic interventions, investigation of the development and manufacture of drug substances and products, and harnessing Scotland's rich health informatics datasets to inform stratified medicine approaches and investigate the impact of public health interventions.

Explore Open Access research by SIPBS. Or explore all of Strathclyde's Open Access research...

Hot spots and dark current in advanced plasma wakefield accelerators

Manahan, G. G. and Deng, A. and Karger, O. and Xi, Y. and Knetsch, A. and Litos, M. and Wittig, G. and Heinemann, T. and Smith, J. and Sheng, Z. M. and Jaroszynski, D. A. and Andonian, G. and Bruhwiler, D. L. and Rosenzweig, J. B. and Hidding, B. (2016) Hot spots and dark current in advanced plasma wakefield accelerators. Physical Review Special Topics: Accelerators and Beams, 19 (1). ISSN 1098-4402

[img]
Preview
Text (Manahan-etal-PRAB-2016-Hot-spots-and-dark-current-in-advanced-plasma)
Manahan_etal_PRAB_2016_Hot_spots_and_dark_current_in_advanced_plasma.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (5MB) | Preview

Abstract

Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.