Picture of server farm and IT infrastructure

Where technology & law meet: Open Access research on data security & its regulation ...

Strathprints makes available Open Access scholarly outputs exploring both the technical aspects of computer security, but also the regulation of existing or emerging technologies. A research specialism of the Department of Computer & Information Sciences (CIS) is computer security. Researchers explore issues surrounding web intrusion detection techniques, malware characteristics, textual steganography and trusted systems. Digital forensics and cyber crime are also a focus.

Meanwhile, the School of Law and its Centre for Internet Law & Policy undertake studies on Internet governance. An important component of this work is consideration of privacy and data protection questions and the increasing focus on cybercrime and 'cyberterrorism'.

Explore the Open Access research by CIS on computer security or the School of Law's work on law, technology and regulation. Or explore all of Strathclyde's Open Access research...

Hot spots and dark current in advanced plasma wakefield accelerators

Manahan, G. G. and Deng, A. and Karger, O. and Xi, Y. and Knetsch, A. and Litos, M. and Wittig, G. and Heinemann, T. and Smith, J. and Sheng, Z. M. and Jaroszynski, D. A. and Andonian, G. and Bruhwiler, D. L. and Rosenzweig, J. B. and Hidding, B. (2016) Hot spots and dark current in advanced plasma wakefield accelerators. Physical Review Special Topics: Accelerators and Beams, 19 (1). ISSN 1098-4402

[img]
Preview
Text (Manahan-etal-PRAB-2016-Hot-spots-and-dark-current-in-advanced-plasma)
Manahan_etal_PRAB_2016_Hot_spots_and_dark_current_in_advanced_plasma.pdf
Final Published Version
License: Creative Commons Attribution 4.0 logo

Download (5MB) | Preview

Abstract

Dark current can spoil witness bunch beam quality and acceleration efficiency in particle beam-driven plasma wakefield accelerators. In advanced schemes, hot spots generated by the drive beam or the wakefield can release electrons from higher ionization threshold levels in the plasma media. These electrons may be trapped inside the plasma wake and will then accumulate dark current, which is generally detrimental for a clear and unspoiled plasma acceleration process. Strategies for generating clean and robust, dark current free plasma wake cavities are devised and analyzed, and crucial aspects for experimental realization of such optimized scenarios are discussed.