Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Enzymatically activated emulsions stabilised by interfacial nanofibre networks

Moreira, Inês P. and Ramos Sasselli, Ivan and Cannon, Daniel A. and Hughes, Meghan and Lamprou, Dimitrios A. and Tuttle, Tell and Ulijn, Rein V. (2016) Enzymatically activated emulsions stabilised by interfacial nanofibre networks. Soft Matter, 12 (9). pp. 2623-2631. ISSN 1744-6848

[img]
Preview
Text (Moreira-etal-SM-2016-Enzymatically-activated-emulsions-stabilized-by-interfacial)
Moreira_etal_SM_2016_Enzymatically_activated_emulsions_stabilized_by_interfacial.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

We report on-demand formation of emulsions stabilised by interfacial nanoscale networks. These are formed through biocatalytic dephosphorylation and self-assembly of Fmoc(9-fluorenylmethoxycarbonyl)-dipeptide amphiphiles in aqueous/organic mixtures. This is achieved by using alkaline phosphatase which transforms surfactant-like phosphorylated precursors into self-assembling aromatic peptide amphiphiles (Fmoc-tyrosine-leucine, Fmoc-YL) that form nanofibrous networks. In biphasic organic/aqueous systems, these networks form preferentially at the interface thus providing a means of emulsion stabilisation. We demonstrate on-demand emulsification by enzyme addition, even after storage of the biphasic mixture for several weeks. Experimental (Fluorescence, FTIR spectroscopy, fluorescence microscopy, electron microscopy, atomic force microscopy) and computational techniques (atomistic molecular dynamics) are used to characterise the interfacial self-assembly process.