Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Shakedown and creep rupture assessment of a header branch pipe using the Linear Matching Method

Jackson, G.D. and Chen, H.F. and Tipping, D. (2015) Shakedown and creep rupture assessment of a header branch pipe using the Linear Matching Method. Procedia Engineering, 130. pp. 1705-1718. ISSN 1877-7058

Text (Jackson-etal-PE-2015-creep-rupture-assessment-of-a-header-branch-pipe)
Final Published Version
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (2MB) | Preview


Many power plant components are subject to combined mechanical and thermal loading conditions during their operating lifetime. It is important that potential failure mechanisms of such components are extensively investigated in order to ensure sufficient confidence in their reliability. This paper presents shakedown and creep rupture analyses of a header branch pipe subjected to cyclic thermo-mechanical loading performed using the Linear Matching Method (LMM). The detailed investigation of failure mechanisms under the combined action of the internal pressure and the cyclic thermal load due to the temperature difference between the inner and outer pipe surfaces will be the primary focus of this paper. The header branch pipe considered here is composed of a single material with properties that are dependent upon both temperature and rupture life. A novel study investigating the effect that two geometric parameters – branch diameter and separation – have upon the failure mechanisms of the header branch pipe has also been carried out. The impact that these geometric parameters have upon the limit load, shakedown and creep rupture limits is one of the principal areas that is investigated in this work. In addition to this, an understanding of the dependency of the creep rupture limit upon the defined time to creep rupture is also studied. Verification of these results is then given by full elastic-plastic analyses performed within ABAQUS.