Synergistic efficacy of 405nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores
Moorhead, Sian and MacLean, Michelle and Coia, John E. and MacGregor, Scott J. and Anderson, John G. (2016) Synergistic efficacy of 405nm light and chlorinated disinfectants for the enhanced decontamination of Clostridium difficile spores. Anaerobe, 37. pp. 72-77. ISSN 1095-8274 (https://doi.org/10.1016/j.anaerobe.2015.12.006)
Preview |
Text.
Filename: Moorhead_etal_anaerobe_2015_Synergistic_efficacy_of_405nm_light_and_chlorinated_disinfectants_for_the_enhanced_decontamination.pdf
Accepted Author Manuscript License: Download (1MB)| Preview |
Abstract
The ability of Clostridium difficile to form highly resilient spores which can survive in the environment for prolonged periods causes major contamination problems. Antimicrobial 405 nm light is being developed for environmental decontamination within hospitals, however further information relating to its sporicidal efficacy is required. This study aims to establish the efficacy of 405 nm light for inactivation of C. difficile vegetative cells and spores, and to establish whether spore susceptibility can be enhanced by the combined use of 405 nm light with low concentration chlorinated disinfectants. Vegetative cells and spore suspensions were exposed to increasing doses of 405 nm light (at 70–225 mW/cm2) to establish sensitivity. A 99.9% reduction in vegetative cell population was demonstrated with a dose of 252 J/cm2, however spores demonstrated higher resilience, with a 10-fold increase in required dose. Exposures were repeated with spores suspended in the hospital disinfectants sodium hypochlorite, Actichlor and Tristel at non-lethal concentrations (0.1%, 0.001% and 0.0001%, respectively). Enhanced sporicidal activity was achieved when spores were exposed to 405 nm light in the presence of the disinfectants, with a 99.9% reduction achieved following exposure to 33% less light dose than required when exposed to 405 nm light alone. In conclusion, C. difficile vegetative cells and spores can be successfully inactivated using 405 nm light, the sporicidal efficacy can be significantly enhanced when exposed in the presence of low concentration chlorinated disinfectants. Further research may lead to the potential use of 405 nm light decontamination in combination with selected hospital disinfectants to enhance C. difficile cleaning and infection control procedures.
ORCID iDs
Moorhead, Sian ORCID: https://orcid.org/0000-0001-6556-7487, MacLean, Michelle ORCID: https://orcid.org/0000-0001-5750-0397, Coia, John E., MacGregor, Scott J. ORCID: https://orcid.org/0000-0002-0808-585X and Anderson, John G. ORCID: https://orcid.org/0000-0003-4151-1619;-
-
Item type: Article ID code: 55240 Dates: DateEvent1 February 2016Published18 December 2015Published Online13 December 2015AcceptedSubjects: Technology > Electrical engineering. Electronics Nuclear engineering Department: Faculty of Engineering > Electronic and Electrical Engineering Depositing user: Pure Administrator Date deposited: 05 Jan 2016 14:27 Last modified: 06 Jan 2025 20:22 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/55240