Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Effect of alignment perturbations in a trans-tibial prosthesis user : a pilot study

Courtney, Anna and Orendurff, Michael S. and Buis, Adrianus (2016) Effect of alignment perturbations in a trans-tibial prosthesis user : a pilot study. Journal of Rehabilitation Medicine, 48 (4). pp. 396-401. ISSN 1650-1977

[img]
Preview
Text (Courtney-etal-JRM-2015-The-effect-of-alignment-perturbations-in-a-trans-tibial-prosthesis-user)
Courtney_etal_JRM_2015_The_effect_of_alignment_perturbations_in_a_trans_tibial_prosthesis_user.pdf
Accepted Author Manuscript

Download (626kB)| Preview

    Abstract

    A recurring complication voiced by trans-tibial prosthetic limb users is ‘poor socket fit’ with painful residuum-socket interfaces, a consequence of excess pressure. This is attributable to both poor socket fit and poor socket alignment, however, their interaction has not been quantified. Through evaluation of kinetic data this study aimed to articulate an interaction uniting socket design, alignment and interface pressures (IPs). Results will help refine future studies, which will help determine if sockets can be designed, fitted and aligned to maximise mobility whilst minimising injurious forces. IPs were recorded throughout ambulation in one user with ‘optimal (reference) alignment’ followed by five malalignments in a patellar tendon-bearing (PTB) and a hydrocast socket. Marked differences in pressure distribution were discovered when equating the PTB against the hydrocast socket and when comparing IPs from reference to offset alignment. PTB sockets were established more sensitive to alignment perturbations than hydrocast sockets. A complex interaction was found, with the most prominent finding demonstrating the requisite for attainment of optimal alignment: a translational alignment error of 10mm can increase maximum peak pressures by 227 percent (x̄=17.5%). Refinements for future trials have been established, as has the necessity for future research regarding socket design, alignment and IPs.