Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Wide-band HE11 mode terahertz wave windows for gyro-amplifiers

Donaldson, Craig R. and McElhinney, Paul and Zhang, Liang and He, Wenlong (2015) Wide-band HE11 mode terahertz wave windows for gyro-amplifiers. IEEE Transactions on Terahertz Science & Technology. ISSN 2156-3446

Text (Donaldson-etal-IEEE-TTST-2015-Wide-band-HE11-mode-terahertz-wave-windows)
Accepted Author Manuscript

Download (1MB)| Preview


    Broadband HE11 mode output windows, based on the multilayer concept, are studied for high power gyro-amplifiers operating in the low terahertz region. As the wave power in the hybrid HE11 mode is concentrated in the center of the circular waveguide, smaller reflection and better coupling to the fundamental free space Gaussian mode can be achieved for the windows. Two windows are designed for optimized performance through simulations for operation in two frequency ranges of 360– 400 GHz and 90–100 GHz. The simulated performance, practical constraints in realization and manufacturing methods of the 90–100 GHz window is discussed. This window was constructed and microwave properties measured showing a lower than -27 dB reflection. This result agrees with simulation data which validates the simulation methodology and effectiveness of the design.