Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Implicit large eddy simulation of weakly-compressible turbulent channel flow

Kokkinakis, Ioannis and Drikakis, D. (2015) Implicit large eddy simulation of weakly-compressible turbulent channel flow. Computer Methods in Applied Mechanics and Engineering, 287. pp. 229-261. ISSN 0045-7825

[img]
Preview
Text (Kokkinakis-Drikakis-CMAME-2015-Implicit-large-eddy-simulation-of-weakly-compressible-turbulent)
Kokkinakis_Drikakis_CMAME_2015_Implicit_large_eddy_simulation_of_weakly_compressible_turbulent.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

This paper concerns the accuracy of several high-resolution and high-order finite volume schemes in Implicit Large Eddy Simulation of weakly-compressible turbulent channel flow. The main objective is to investigate the properties of numerical schemes, originally designed for compressible flows, in low Mach compressible, near-wall turbulent flows. Variants of the Monotone Upstream-centred Scheme for Conservation Laws and Weighted Essentially Non-Oscillatory schemes for orders of accuracy ranging from second to ninth order, as well as with and without low Mach corrections, have been investigated. The performance of the schemes has been assessed against incompressible Direct Numerical Simulations. Detailed comparisons of the velocity profiles, turbulent shear stresses and higher-order turbulent statistics reveal that the low Mach correction can significantly reduce the numerical dissipation of the methods in low Mach boundary layer flows. The effects of the low Mach correction have more profound impact on second and third-order schemes, but they also improve the accuracy of fifth order schemes. The ninth-order Weighted Essentially Non-Oscillatory scheme is the least dissipative scheme and it is shown that the implementation of the low Mach correction in conjunction with this scheme has a significant anti-dissipative effect that adversely affects the accuracy. Finally, the computational cost required for obtaining the improved accuracy using increasingly higher order schemes is also discussed.