Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Wind forecasting using kriging and vector auto-regressive models for dynamic line rating studies

Fan, Fulin and Bell, Keith and Hill, David and Infield, David (2015) Wind forecasting using kriging and vector auto-regressive models for dynamic line rating studies. In: 2015 IEEE Eindhoven PowerTech Proceedings. IEEE, Piscataway, NJ., pp. 1-6.

[img]
Preview
Text (Fan-etal-PowerTech2015-wind-forecasting-using-kriging-and-vector-auto-regressive-models)
Fan_etal_PowerTech2015_wind_forecasting_using_kriging_and_vector_auto_regressive_models.pdf
Accepted Author Manuscript

Download (283kB) | Preview

Abstract

This paper aims to describe methods to forecast wind speeds experienced around overhead lines (OHLs) in order to predict the wind cooling effect and thus the dynamic line ratings (DLRs) of OHLs. The wind speed at a particular OHL span is forecast through a kriging interpolation between the wind speed predictions produced by a vector auto-regressive (VAR) model for a limited number of weather stations at which observations have been obtained. A temporal de-trending method is used to ensure the stationarity of de-trended data from which model parameters are determined. A spatial de-trending method is adopted in a kriging model. The results show that the kriging model performs better than the inverse distance weighting (IDW) method and that the spatial de-trending makes the main contribution to the accuracy of interpolation. Furthermore, the VAR forecasting model is shown to give greater improvement over persistence than a simple auto-regressive (AR) model.