Picture offshore wind farm

Open Access: World leading research into plasma physics...

Strathprints makes available scholarly Open Access content by researchers in the Department of Physics, including those researching plasma physics.

Plasma physics explores the '4th' state of matter known as 'plasma'. Profound new insights are being made by Strathclyde researchers in their attempts to better understand plasma, its behaviour and applications. Areas of focus include plasma wave propagation, non-linear wave interactions in the ionosphere, magnetospheric cyclotron instabilities, the parametric instabilities in plasmas, and much more.

Based on the REF 2014 GPA Scores, Times Higher Education ranked Strathclyde as number one in the UK for physics research.

Explore Open Access plasma physics research and of the Department of Physics more generally. Or explore all of Strathclyde's Open Access research...

Quadrant marked mesh patterns in 132-avoiding permutations III

Kitaev, Sergey and Remmel, Jeffrey and Tiefenbruck, Mark (2015) Quadrant marked mesh patterns in 132-avoiding permutations III. Integers: Electronic Journal of Combinatorial Number Theory. ISSN 1553-1732 (In Press)

[img]
Preview
Text (Kitaev-etal-Integers-2015-Quadrant-marked-mesh-patterns-in-132-avoiding)
Kitaev_etal_Integers_2015_Quadrant_marked_mesh_patterns_in_132_avoiding.pdf
Accepted Author Manuscript

Download (328kB) | Preview

Abstract

Given a permutation σ = σ1 . . . σn in the symmetric group Sn, we say that σi matches the marked mesh pattern MMP(a, b, c, d) in σ if there are at least a points to the right of σi in σ which are greater than σi, at least b points to the left of σi in σ which are greater than σi, at least c points to the left of σi in σ which are smaller than σi, and at least d points to the right of σi in σ which are smaller than σi. This paper is continuation of the systematic study of the distributions of quad- rant marked mesh patterns in 132-avoiding permutations started in [9] and [10] where we studied the distribution of the number of matches of MMP(a, b, c, d) in 132-avoiding permutations where at most two elements of a, b, c, d are greater than zero and the remaining elements are zero. In this paper, we study the distribution of the number of matches of MMP(a, b, c, d) in 132-avoiding permutations where at least three of a, b, c, d are greater than zero. We provide explicit recurrence relations to enumerate our objects which can be used to give closed forms for the generating functions associated with such distributions. In many cases, we provide combinatorial explanations of the coefficients that appear in our generating functions.