Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Defect tolerance of friction stir welds in DH36 steel

Stevenson, Ryan and Toumpis, Athanasios and Galloway, Alexander (2015) Defect tolerance of friction stir welds in DH36 steel. Materials and Design, 87. pp. 701-711. ISSN 0261-3069

[img]
Preview
Text (Stevenson-etal-JMatsDes-2015-Defect-tolerance-of-friction-stir-welds-in-DH36-steel)
Stevenson_etal_JMatsDes_2015_Defect_tolerance_of_friction_stir_welds_in_DH36_steel.pdf
Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

Friction stir welding of steel is in the early stages of development. The aim to commercialise this process creates a trade-off between welding time, cost and quality of the joint produced. Therefore, it becomes critical to analyse the lower quality bound of steel friction stir welds in conventional square edge butt welding configuration. Work has been undertaken to evaluate the microstructure and fatigue performance of 6 mm thick DH36 steel plates friction stir welded with sub-optimal process conditions, resulting in the development of embedded and surface breaking flaws. The defective weldments were characterised to understand the nature of the flaws and a programme of mechanical testing was undertaken (including fatigue assessment) to determine the relationship between the flaw geometry, location and weld quality. A number of characteristic flaws were identified and seen to interact with the samples’ fatigue fracture mechanisms. Samples with wormholes at the weld root produced the lowest fatigue performance. Fracture from incomplete fusion paths at the retreating side of the welds’ top surface was seen to correspond to the highest recorded fatigue lives. The work provides an insight into the complex nature of characteristic flaws in steel friction stir welds and their interaction with fatigue behaviour.