Picture of model of urban architecture

Open Access research that is exploring the innovative potential of sustainable design solutions in architecture and urban planning...

Strathprints makes available scholarly Open Access content by researchers in the Department of Architecture based within the Faculty of Engineering.

Research activity at Architecture explores a wide variety of significant research areas within architecture and the built environment. Among these is the better exploitation of innovative construction technologies and ICT to optimise 'total building performance', as well as reduce waste and environmental impact. Sustainable architectural and urban design is an important component of this. To this end, the Cluster for Research in Design and Sustainability (CRiDS) focuses its research energies towards developing resilient responses to the social, environmental and economic challenges associated with urbanism and cities, in both the developed and developing world.

Explore all the Open Access research of the Department of Architecture. Or explore all of Strathclyde's Open Access research...

Ship-to-ship interaction during overtaking operation in shallow water

Yuan, Zhi-Ming and He, Shi and Kellett, Paula and Incecik, Atilla and Turan, Osman and Boulougouris, Evangelos (2015) Ship-to-ship interaction during overtaking operation in shallow water. Journal of Ship Research, 59 (3). pp. 172-187. ISSN 0022-4502

Full text not available in this repository. Request a copy from the Strathclyde author


Hydrodynamic interaction continues to be a major contributory factor in marine casualties and hazardous incidents, in particular, in the case of overtaking operations. The situation becomes even worse when the overtaking operation occurs in shallow and narrow channels, where the interaction can cause the vessels to collide and, in one case has caused the capsizal of the smaller vessel with loss of life. The aim of this article is to propose a methodology, as well as to discuss the development of a numerical program, to predict the ship-to-ship interaction during overtaking operations in shallow water. Since the vessels involved in this study have different forward speeds, an uncoupled method will be used to solve the boundary value problem. The in-house multibody hydrodynamic interaction program MHydro, which is based on the 3D Rankine source method, is used and extended here to investigate the interactive forces and wave patterns between two ships during an overtaking operation. The calculations given in this article are compared with model test results as well as published computational fluid dynamics (CFD) calculations. Very satisfactory agreement has been obtained, which indicates that the proposed methodology and developed program are successfully validated to predict the hydrodynamic interaction between two ships advancing in confined waters. The discussions also highlight the speed effects.