Picture of rolled up £5 note

Open Access research that shapes economic thinking...

Strathprints makes available scholarly Open Access content by the Fraser of Allander Institute (FAI), a leading independent economic research unit focused on the Scottish economy and based within the Department of Economics. The FAI focuses on research exploring economics and its role within sustainable growth policy, fiscal analysis, energy and climate change, labour market trends, inclusive growth and wellbeing.

The open content by FAI made available by Strathprints also includes an archive of over 40 years of papers and commentaries published in the Fraser of Allander Economic Commentary, formerly known as the Quarterly Economic Commentary. Founded in 1975, "the Commentary" is the leading publication on the Scottish economy and offers authoritative and independent analysis of the key issues of the day.

Explore Open Access research by FAI or the Department of Economics - or read papers from the Commentary archive [1975-2006] and [2007-2018]. Or explore all of Strathclyde's Open Access research...

Learning macro-actions for arbitrary planners and domains

Newton, M.A. Hakim and Levine, John and Fox, Maria and Long, Derek (2007) Learning macro-actions for arbitrary planners and domains. In: Proceedings of the Seventeenth International Conference on Automated Planning and Scheduling (ICAPS 2007). AAAI Press, California, USA, pp. 256-263. ISBN 1577353447

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Many complex domains and even larger problems in simple domains remain challenging in spite of the recent progress in planning. Besides developing and improving planning technologies, re-engineering a domain by utilising acquired knowledge opens up a potential avenue for further research. Moreover, macro-actions, when added to the domain as additional actions, provide a promising means by which to convey such knowledge. A macro-action, or macro in short, is a group of actions selected for application as a single choice. Most existing work on macros exploits properties explicitly specific to the planners or the domains. However, such properties are not likely to be common with arbitrary planners or domains. Therefore, a macro learning method that does not exploit any structural knowledge about planners or domains explicitly is of immense interest. This paper presents an offline macro learning method that works with arbitrarily chosen planners and domains. Given a planner, a domain, and a number of example problems, the learning method generates macros from plans of some of the given problems under the guidance of a genetic algorithm. It represents macros like regular actions, evaluates them individually by solving the remaining given problems, and suggests individual macros that are to be added to the domain permanently. Genetic algorithms are automatic learning methods that can capture inherent features of a system using no explicit knowledge about it. Our method thus does not strive to discover or utilise any structural properties specific to a planner or a domain.