Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Testing and validation of an algorithm for configuring distribution grid sensor networks

Clarkson, Paul and Venturi, Alberto and Forbes, Alistair and Roscoe, Andrew and Wright, Paul (2015) Testing and validation of an algorithm for configuring distribution grid sensor networks. In: CIRED 23rd International Conference on Electricity Distribution, 2015-06-15 - 2015-06-18, France.

[img]
Preview
Text (Clarkson-etal-CIRED2015-algorithm-for-configuring-distribution-grid-sensor-networks)
Clarkson_etal_CIRED2015_algorithm_for_configuring_distribution_grid_sensor_networks.pdf - Accepted Author Manuscript

Download (260kB) | Preview

Abstract

The control of Smart Grids depends on a reliable set of measurement information such that distributed generation and demand can be effectively managed. The cost of procuring and installing sensors at multiple nodes in the grid is prohibitive and choosing the optimum strategy with regards to sensor location, accuracy, number and type is very important. This report describes the testing of a sensor placement algorithm developed to determine measurement strategies for distribution grids. This testing was performed on a laboratory microgrid at the University of Strathclyde. The ability of the algorithm to choose the optimal subset of measurements was tested by comparing the estimated power flow with the measured power flow of a fully instrumented grid. The chosen subset is found to have the close to the lowest overall error and all estimates agree with the rejected measurements within the calculated uncertainties.