Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Landau levels of the C-exciton in CuInSe2 studied by magneto-transmission

Yakushev, M. V. and Rodina, A. V. and Shuchalin, G. M. and Seisian, R. P. and Abdullaev, M. A. and Rockett, A. and Zhivulko, V. D. and Mudryi, A. V. and Faugeras, C. and Martin, R. W. (2014) Landau levels of the C-exciton in CuInSe2 studied by magneto-transmission. Applied Physics Letters, 105 (14). ISSN 0003-6951

Text (Yakushev-etal-APL-2015-Landau-levels-of-the-C-exciton-in-CulsSe2-studied-by-magneto)
Final Published Version

Download (912kB) | Preview


The electronic structure of the solar cell absorber CuInSe2 is studied using magneto-transmission in thin polycrystalline films at magnetic fields up to 29 T. A, B, and C free excitons are resolved in absorption spectra at zero field and a Landau level fan generated by diamagnetic exciton recombination is observed for fields above 7 T. The dependence of the C band exciton binding energy on magnetic fields, calculated using a hydrogenic approximation, is used to determine the C exciton Rydberg at 0 T (8.5 meV), band gap (1.2828 eV), and hole effective mass mso = (0.31 ± 0.12)m0 for the C valence sub-band.