Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The froth stability column : linking froth stability and flotation performance

Barbian, N. and Hadler, K. and Ventura-Medina, E. and Cilliers, J.J. (2005) The froth stability column : linking froth stability and flotation performance. Minerals Engineering, 18 (3). pp. 317-324. ISSN 0892-6875

Full text not available in this repository.Request a copy from the Strathclyde author


Froth structure and stability are known to play important roles in determining mineral flotation recovery and selectivity. However, measuring froth stability quantitatively, both at laboratory and industrial scales remains a significant challenge. A quantitative dynamic stability measure has previously been evaluated at laboratory scale. The technique is based on the Bikerman foam test and uses a non-overflowing froth column to quantify froth stability. At laboratory scale the froth stability measured in this way agreed very closely with other methods, and could be related to flotation performance. In this paper, the froth stability column is tested at Northparkes, Australia. The dynamic froth stability Σ and froth stability factor β were measured under different operating conditions, and compared with the fraction of air overflowing the cell, α, which was measured using image analysis. The froth stability column results gave the same trends as image analysis. In particular the froth stability factor was found to be linearly related to the actual fraction of air overflowing the cell. The metallurgical results clearly indicated that changes in air rate, froth depth and frother concentration result in variation in flotation performance that can be attributed to changes in froth stability. The results showed that high froth stability conditions occur at lower air flowrates, and result in improved flotation performance. It is found that the froth stability column is an accurate and cost-effective method for quantifying froth stability, and for indicating changes in flotation performance.