Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

Liquid phase mixing in a slurry bubble column with draft tube

Ventura-Medina, E. and Pironti, F. F. and Saez, A. E. (1998) Liquid phase mixing in a slurry bubble column with draft tube. Chemical Engineering Communications, 163 (1). pp. 219-231. ISSN 1563-5201

Full text not available in this repository.Request a copy from the Strathclyde author


In this work we characterize liquid phase mixing in a 150 L bubble column with a draft tube (internal airlift configuration) for a water-air-sand system at high solid concentrations. Liquid mixing is assessed by measuring the evolution of sodium chloride concentration after a pulse of concentrated NaCl solution is injected. Tracer concentrations were measured by means of electrical conductivity probes. The experimental set up consists of a 0.29 m internal diameter, 3 m length Plexiglas column with a conical bottom (cone apex angle of 60°) and a concentric draft tube with 0.14 m internal diameter and 2 m length. The gas superficial velocity based on the cross section of the column vaired from 0.057 to 0.22 m/s. Sand particles of 280 μm in average size were used, with slurry concentrations ranging from 120 to 500 kg/m3. From the tracer outputs, circulation time (time between peaks of the response curve) and mixing time (time required to achieve a 95% homogeneous solution) were determined after the pulse had been injected. The experimental data were analyzed by means of a tank in series model with recirculation. The circulation and mixing times were found to increase with solids concentration, and to decrease as the riser gas velocity was increased. The circulation limes were larger in continuous operation than in semibatch mode. The results show that the system has equivalent dispersion coefficients that are one order of magnitude lower than those found in a conventional bubble column.