Picture of neon light reading 'Open'

Discover open research at Strathprints as part of International Open Access Week!

23-29 October 2017 is International Open Access Week. The Strathprints institutional repository is a digital archive of Open Access research outputs, all produced by University of Strathclyde researchers.

Explore recent world leading Open Access research content this Open Access Week from across Strathclyde's many research active faculties: Engineering, Science, Humanities, Arts & Social Sciences and Strathclyde Business School.

Explore all Strathclyde Open Access research outputs...

Tensile properties of the transverse carpal ligament and carpal tunnel complex

Ugbolue, Ukadike C. and Gislason, Magnus K. and Carter, Mark and Fogg, Quentin A. and Riches, Philip E. and Rowe, Philip J. (2015) Tensile properties of the transverse carpal ligament and carpal tunnel complex. Clinical Biomechanics. ISSN 0268-0033

[img]
Preview
Text (Ugbolue-etal-CB-2015-Tensile-properties-of-the-transverse-carpal-ligament-and-carpal)
Ugbolue_etal_CB_2015_Tensile_properties_of_the_transverse_carpal_ligament_and_carpal.pdf - Accepted Author Manuscript
License: Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 logo

Download (1MB) | Preview

Abstract

A new sophisticated method that uses video analysis techniques together with a Maillon Rapide Delta to determine the tensile properties of the transverse carpal ligament–carpal tunnel complex has been developed. Six embalmed cadaveric specimens amputated at the mid-forearm and aged (mean (SD)): 82 (6.29) years were tested. The six hands were from three males (four hands) and one female (two hands). Using trigonometry and geometry the elongation and strain of the transverse carpal ligament and carpal arch were calculated. The cross-sectional area of the transverse carpal ligament was determined. Tensile properties of the transverse carpal ligament–carpal tunnel complex and Load–Displacement data were also obtained. Descriptive statistics, one-way ANOVA together with a post-hoc analysis (Tukey) and t-tests were incorporated. A transverse carpal ligament–carpal tunnel complex novel testing method has been developed. The results suggest that there were no significant differences between the original transverse carpal ligament width and transverse carpal ligament at peak elongation (P= 0.108). There were significant differences between the original carpal arch width and carpal arch width at peak elongation (P=0.002). The transverse carpal ligament failed either at the mid-substance or at their bony attachments. At maximum deformation the peak load and maximum transverse carpal ligament displacements ranged from 285.74 N to 1369.66 N and 7.09 mm to 18.55 mm respectively. The transverse carpal ligament cross-sectional area mean (SD) was 27.21 (3.41)mm2. Using this method the results provide useful biomechanical information and data about the tensile properties of the transverse carpal ligament–carpal tunnel complex.