Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

A basal ganglia inspired soft switching approach to the motion control of a car-like autonomous vehicle

Yang, Erfu and Hussain, Amir and Gurney, Kevin (2013) A basal ganglia inspired soft switching approach to the motion control of a car-like autonomous vehicle. In: Advances in Brain Inspired Cognitive Systems. Lecture Notes in Computer Science . Springer Berlin/Heidelberg, Berlin, pp. 245-254. ISBN 9783642387852

Full text not available in this repository. Request a copy from the Strathclyde author


This paper presents a new brain-inspired, switching control approach for a car-like autonomous vehicle using a basal ganglia (BG) model as an action selection mechanism. The problem domain has challenging nonholonomic and state constraints which imply no single stabilizing controller solution is possible by time-invariant smooth state feedback. To allow the BG make the correct controller selection from a family of candidate motion controllers, a fuzzy logic-based salience model using reference and tracking error only is developed, and applied in a soft switching control mechanism. To demonstrate the effectiveness of our approach for motion tracking control, we show effective control for a circular trajectory tracking application. The performance and advantages of the proposed fuzzy salience model and the BG-based soft switching control scheme against a traditional single control method are compared.