Through-space transfer of chiral information mediated by a plasmonic nanomaterial

Ostovar pour, Saeideh and Rocks, Louise and Faulds, Karen and Graham, Duncan and Parchaňský, Václav and Bouř, Petr and Blanch, Ewan W. (2015) Through-space transfer of chiral information mediated by a plasmonic nanomaterial. Nature Chemistry, 7 (7). 591–596. ISSN 1755-4330

[thumbnail of Ostovarpour-etal-NC-2015-Through-space-transfer-of-chiral-information-mediated-by]
Text (Ostovarpour-etal-NC-2015-Through-space-transfer-of-chiral-information-mediated-by)
Accepted Author Manuscript

Download (1MB)| Preview


    The ability to detect chirality gives stereochemically attuned nanosensors the potential to revolutionise the study of biomolecular processes. Such devices may structurally characterise the mechanisms of protein-ligand binding, the intermediates of amyloidogenic diseases and the effects of phosphorylation and glycosylation. We demonstrate that single nanoparticle plasmonic reporters, or nanotags, can enable a stereochemical response to be transmitted from a chiral analyte to an achiral benzotriazole dye molecule in the vicinity of a plasmon resonance from an achiral metallic nanostructure. The transfer of chirality was verified by the measurement of mirror image surface enhanced resonance Raman optical activity spectra for the two enantiomers of each of ribose and tryptophan. Computational modelling confirms these observations and reveals the novel chirality transfer mechanism responsible. This is the first report of colloidal metal nanoparticles in the form of single plasmonic substrates displaying an intrinsic chiral sensitivity once attached to a chiral molecule.

    ORCID iDs

    Ostovar pour, Saeideh, Rocks, Louise, Faulds, Karen ORCID logoORCID:, Graham, Duncan ORCID logoORCID:, Parchaňský, Václav, Bouř, Petr and Blanch, Ewan W.;