Picture map of Europe with pins indicating European capital cities

Open Access research with a European policy impact...

The Strathprints institutional repository is a digital archive of University of Strathclyde's Open Access research outputs. Strathprints provides access to thousands of Open Access research papers by Strathclyde researchers, including by researchers from the European Policies Research Centre (EPRC).

EPRC is a leading institute in Europe for comparative research on public policy, with a particular focus on regional development policies. Spanning 30 European countries, EPRC research programmes have a strong emphasis on applied research and knowledge exchange, including the provision of policy advice to EU institutions and national and sub-national government authorities throughout Europe.

Explore research outputs by the European Policies Research Centre...

Photovoltaic pixels for neural stimulation : circuit models and performance

Boinagrov, David and Lei, Xin and Goetz, Georges and Kamins, Theodore I. and Mathieson, Keith and Galambos, Ludwig and Harris, James S. and Palanker, Daniel (2016) Photovoltaic pixels for neural stimulation : circuit models and performance. IEEE Transactions on Biomedical Circuits and Systems, 10 (1). pp. 85-97. ISSN 1932-4545

[img]
Preview
Text (Boinagrov-etal-IEEE-TOBCS-2015-Photovoltaic-pixels-for-neural-stimulation-circuit-models)
Boinagrov_etal_IEEE_TOBCS_2015_Photovoltaic_pixels_for_neural_stimulation_circuit_models.pdf - Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Photovoltaic conversion of pulsed light into pulsed electric current enables optically-activated neural stimulation with miniature wireless implants. In photovoltaic retinal prostheses, patterns of near-infrared light projected from video goggles onto subretinal arrays of photovoltaic pixels are converted into patterns of current to stimulate the inner retinal neurons. We describe a model of these devices and evaluate the performance of photovoltaic circuits, including the electrode-electrolyte interface. Characteristics of the electrodes measured in saline with various voltages, pulse durations, and polarities were modeled as voltage-dependent capacitances and Faradaic resistances. The resulting mathematical model of the circuit yielded dynamics of the electric current generated by the photovoltaic pixels illuminated by pulsed light. Voltages measured in saline with a pipette electrode above the pixel closely matched results of the model. Using the circuit model, our pixel design was optimized for maximum charge injection under various lighting conditions and for different stimulation thresholds. To speed discharge of the electrodes between the pulses of light, a shunt resistor was introduced and optimized for high frequency stimulation.