Picture of DNA strand

Pioneering chemical biology & medicinal chemistry through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Pure & Applied Chemistry, based within the Faculty of Science.

Research here spans a wide range of topics from analytical chemistry to materials science, and from biological chemistry to theoretical chemistry. The specific work in chemical biology and medicinal chemistry, as an example, encompasses pioneering techniques in synthesis, bioinformatics, nucleic acid chemistry, amino acid chemistry, heterocyclic chemistry, biophysical chemistry and NMR spectroscopy.

Explore the Open Access research of the Department of Pure & Applied Chemistry. Or explore all of Strathclyde's Open Access research...

Continued operation of multi-terminal HVDC networks based on modular multilevel converters

Ased, G.P. and Li, R. and Holliday, D. and Finney, S. and Xu, L. and Williams, B.W. and Kuroda, K. and Yamamoto, R. and Ito, H. (2014) Continued operation of multi-terminal HVDC networks based on modular multilevel converters. In: Cigré International Symposium, 2015-05-27 - 2015-05-28, Lund University. (In Press)

[img] PDF (Adam-etal-CIGRE2015-multi-terminal-hvdc-networks)
Adam_etal_CIGRE2015_multi_terminal_hvdc_networks.pdf
Accepted Author Manuscript

Download (1MB)

    Abstract

    A comprehensive study that explores the possibility of using passive networks and active converter control to facilitate continued operation of multi-terminal HVDC networks with minimum interruption during pole-to-pole dc short-circuit faults is presented. The primary objective of this study is to achieve continued operation of any multi-terminal HVDC network using relatively slow dc circuit breakers (with minimum operation time of 10ms), without over-stressing converter switches and without converter dc link voltages falling below the peak ac line voltage. The validity of the proposed method is confirmed using time-domain simulations. Results obtained from iterative simulations confirm the possibility of further extension of fault clearance time to more than 10ms, but at the expense of increased passive component size.