Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Foam drainage on a sloping weir

Grassia, P. and Neethling, S.J. and Cilliers, J.J. (2002) Foam drainage on a sloping weir. European Physical Journal E, 8 (1 Supp). pp. 517-529. ISSN 1292-8941

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

Foam drainage is considered in a froth flotation tank with a sloping weir. The drainage is shown to be gravity dominated in most of the foam, except for thin boundary layers at the base of the froth, and along the sloping weir. The mathematical reason for the boundary layers is that capillary suction is a much weaker effect than gravity, but cannot be ignored altogether, because it represents a singular perturbation. The relative weakness of capillary suction with respect to gravity is represented by a key dimensionless parameter, denoted K, which satisfies K ≪ 1. The volumetric flow at any point along the weir boundary layer is the accumulation of all liquid that has rained onto the weir above the point in question: typically, this flow is linear in distance measured downward from the weir lip. All liquid raining onto the weir is ultimately returned to the pulp phase as a high-speed jet. The jet velocity scales with the ⅔ power of distance from the weir lip, and is O (K -2/3) times larger than the typical velocity in the gravity-dominated flow in the bulk of the flotation tank. The liquid volume fraction in the jet is likewise O (K -2/3) larger than that in the bulk. Across the jet, the foam exhibits a known profile of liquid fraction vs. distance from the weir: this is known as the equilibrium profile. The foam requires a distance equivalent to O(K 4/3) weir lengths to dry out significantly from the wetness value on the weir, but a larger O(K) distance to fall back to a wetness comparable with that in the bulk of the froth.