Simulations of rarefied and continuum hypersonic flow over re-entry objects

Scanlon, Thomas and Cassineli Palharini, Rodrigo and White, Craig and Espinoza, Daniel and Casseau, Vincent (2015) Simulations of rarefied and continuum hypersonic flow over re-entry objects. In: 8th European Symposium on Aerothermodynamics for Space Vehicles, 2015-03-02 - 2015-03-06.

[thumbnail of Scanlon-etal-Aerothermodynamics-Space-Veh-2015-Simulations-of-rarefied-and-continuum-hypersonic-flow-re-entry-objects-Mar-2015] PDF (Scanlon-etal-Aerothermodynamics-Space-Veh-2015-Simulations-of-rarefied-and-continuum-hypersonic-flow-re-entry-objects-Mar-2015)
Accepted Author Manuscript

Download (5MB)


    Numerical simulations of high-speed, high-altitude flow over re-entry objects have been carried out for a variety of flow conditions corresponding to test cases proposed for the 1st Spacecraft Demise Workshop. In the continuum regime, conventional computational fluid dynamics (CFD) has been employed to characterise the aerothermodynamic loads acting on the bodies and to predict the shock structures in the surrounding flow fields. In the upper atmosphere, transition-continuum regime the direct simulation Monte Carlo (DSMC) approach has been applied using the quantum-kinetic (Q-K) chemistry model to account for the dissociation of nitrogen. Both CFD and DSMC approaches have been applied within the framework of the open-source CFD toolbox OpenFOAM.

    ORCID iDs

    Scanlon, Thomas ORCID logoORCID:, Cassineli Palharini, Rodrigo, White, Craig, Espinoza, Daniel ORCID logoORCID: and Casseau, Vincent ORCID logoORCID:;