Picture of industrial chimneys polluting horizon

Open Access research shaping international environmental governance...

Strathprints makes available scholarly Open Access content exploring environmental law and governance, in particular the work of the Strathclyde Centre for Environmental Law & Governance (SCELG) based within the School of Law.

SCELG aims to improve understanding of the trends, challenges and potential solutions across different interconnected areas of environmental law, including capacity-building for sustainable management of biodiversity, oceans, lands and freshwater, as well as for the fight against climate change. The intersection of international, regional, national and local levels of environmental governance, including the customary laws of indigenous peoples and local communities, and legal developments by private actors, is also a signifcant research specialism.

Explore Open Access research by SCELG or the School of Law. Or explore all of Strathclyde's Open Access research...

A new cyclotron maser radiation mechanism in space plasmas

Bingham, R and Cairns, R A (2002) A new cyclotron maser radiation mechanism in space plasmas. Physica Scripta, T98. pp. 160-162. ISSN 0031-8949

Full text not available in this repository. Request a copy from the Strathclyde author

Abstract

In this paper, we discuss a new cyclotron maser type instability driven by a crescent or horseshaped electron distribution function. Such distribution functions are easily created by an electron beam moving into a stronger magnetic field region, where conservation of the first adiabatic invariant causes an increase in their pitch angle. This produces a broad region on the distribution function where ∂fe/∂v⊥ > 0. Planetary dipole magnetic fields are examples of where these types of distributions can be found. We examine the stability of these electron horseshoe distribution functions for right-hand extraordinary mode (R–X mode) radiation close to the electron cyclotron frequency propagating perpendicular to the magnetic field using both non-relativistic and relativistic beams.