Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

New emerging voltage source converter for high-voltage application : hybrid multilevel converter with dc side H-bridge chain links

Adam, Grain Philip and Williams, Barry W. (2014) New emerging voltage source converter for high-voltage application : hybrid multilevel converter with dc side H-bridge chain links. IET Generation, Transmission and Distribution, 8 (4). pp. 765-773. ISSN 1751-8687

[img]
Preview
Text (Adam-Williams-GTD2014-new-emerging-voltage-source-converter)
Adam_Williams_GTD2014_new_emerging_voltage_source_converter.pdf
Accepted Author Manuscript

Download (1MB) | Preview

Abstract

Hybrid multilevel converters (HMCs) are more attractive than the traditional multilevel converters, such as modular converters, because they offer all the features needed in a modern voltage source converter-based dc transmission system with reduced size and weight, at a competitive level of semiconductor losses. Therefore this study investigates the viability of a HMC that uses dc side H-bridge chain links, for high-voltage dc and flexible ac transmission systems. In addition, its operating principle, modulation and capacitor voltage balancing, and control are investigated. This study focuses on response of this HMC to ac and dc network faults, with special attention paid to device issues that may arise under extreme network faults. Therefore the HMC with dc side chain links is simulated as one station of point-to-point dc transmission system that operates in an inversion mode, with all the necessary control systems incorporated. The major results and findings of subjecting this version of the hybrid converter to ac and dc networks faults are presented and discussed.