Transient supramolecular reconfiguration of peptide nanostructures using ultrasound
Pappas, Charalampos G. and Mutasa, Tapiwa and Frederix, Pim W. J. M. and Fleming, Scott and Bia, Shuo and Debnath, Sisir and Kelly, Sharon M. and Gachagan, Anthony and Ulijn, Rein V. (2015) Transient supramolecular reconfiguration of peptide nanostructures using ultrasound. Materials Horizons, 2 (2). pp. 198-202. ISSN 2051-6355 (https://doi.org/10.1039/c4mh00223g)
PDF.
Filename: Pappas_etal_MH2015_supermolecular_reconfiguration_ultrasound.pdf
Accepted Author Manuscript Download (467kB) |
Abstract
Ultrasound, i.e. high frequency oscillating pressure waves, is commonly used to overcome kinetic barriers associated with dissolution, assembly and gelation.We demonstrate that ultrasound energy may also be used to achieve transient reorganization of supramolecular nanostructures, which revert back to the original state when sound is switched off. Aromatic peptide amphiphiles, Fmoc-FL and -YL were used to study the transient acoustic response. These systems showed temporary supramolecular transitions that were sequence dependent. The changes observed were due to an altered balance between H-bonding and p-stacking, giving rise in changes in chiral organisation of peptide building blocks. Transient reconfiguration was visualized by TEM and changes in supramolecular interactions characterized by fluorescence, FT-IR and CD. Remarkably, significant differences are observed when compared to thermal heating, which shows relates to the oscillating and directional characteristics of ultrasound when delivering heat to a system.
ORCID iDs
Pappas, Charalampos G., Mutasa, Tapiwa ORCID: https://orcid.org/0000-0001-5017-6504, Frederix, Pim W. J. M., Fleming, Scott, Bia, Shuo, Debnath, Sisir, Kelly, Sharon M., Gachagan, Anthony ORCID: https://orcid.org/0000-0002-9728-4120 and Ulijn, Rein V. ORCID: https://orcid.org/0000-0001-7974-3779;-
-
Item type: Article ID code: 51770 Dates: DateEvent1 March 2015Published3 December 2014Published Online3 December 2014AcceptedSubjects: Science > Chemistry > Physical and theoretical chemistry Department: Faculty of Science > Pure and Applied Chemistry
Faculty of Engineering > Electronic and Electrical Engineering
Technology and Innovation Centre > BionanotechnologyDepositing user: Pure Administrator Date deposited: 19 Feb 2015 08:54 Last modified: 18 Jan 2025 01:42 Related URLs: URI: https://strathprints.strath.ac.uk/id/eprint/51770