Picture of boy being examining by doctor at a tuberculosis sanatorium

Understanding our future through Open Access research about our past...

Strathprints makes available scholarly Open Access content by researchers in the Centre for the Social History of Health & Healthcare (CSHHH), based within the School of Humanities, and considered Scotland's leading centre for the history of health and medicine.

Research at CSHHH explores the modern world since 1800 in locations as diverse as the UK, Asia, Africa, North America, and Europe. Areas of specialism include contraception and sexuality; family health and medical services; occupational health and medicine; disability; the history of psychiatry; conflict and warfare; and, drugs, pharmaceuticals and intoxicants.

Explore the Open Access research of the Centre for the Social History of Health and Healthcare. Or explore all of Strathclyde's Open Access research...

Image: Heart of England NHS Foundation Trust. Wellcome Collection - CC-BY.

Growth and characterization of highly mismatched GaN1-xSbx alloys

Yu, K.M. and Novikov, S. V. and Ting, Min and Sarney, W.L. and Svensson, S.P. and Shaw, M. and Martin, R.W. and Walukiewicz, W. and Foxon, C.T. (2014) Growth and characterization of highly mismatched GaN1-xSbx alloys. Journal of Applied Physics, 116 (12). ISSN 0021-8979

[img]
Preview
PDF (Yu-etal-JAP2014-highly-mismatched-gan1xsbx-alloys)
Yu_etal_JAP2014_highly_mismatched_gan1xsbx_alloys.pdf
Final Published Version

Download (2MB) | Preview

Abstract

A systematic investigation on the effects of growth temperature, Ga flux, and Sb flux on the incorporation of Sb, film structure, and optical properties of the GaN1-xSbx highly mismatched alloys (HMAs) was carried out. We found that the direct bandgap ranging from 3.4 eV to below 1.0 eV for the alloys grown at low temperature. At the growth temperature of 80 degrees C, GaN1-xSbx with x>6% losses crystallinity and becomes primarily amorphous with small crystallites of 2-5 nm. Despite the range of microstructures found for GaN1-xSbx alloys with different composition, a well-developed absorption edge shifts from 3.4 eV (GaN) to close to 2 eV for samples with a small amount, less than 10% of Sb. Luminescence from dilute GaN1-xSbx alloys grown at high temperature and the bandgap energy for alloys with higher Sb content are consistent with a localized substitutional Sb level E-Sb at similar to 1.1 eV above the valence band of GaN. The decrease in the bandgap of GaN1-xSbx HMAs is consistent with the formation of a Sb-derived band due to the anticrossing interaction of the Sb states with the valence band of GaN.