Picture of UK Houses of Parliament

Leading national thinking on politics, government & public policy through Open Access research

Strathprints makes available scholarly Open Access content by researchers in the School of Government & Public Policy, based within the Faculty of Humanities & Social Sciences.

Research here is 1st in Scotland for research intensity and spans a wide range of domains. The Department of Politics demonstrates expertise in understanding parties, elections and public opinion, with additional emphases on political economy, institutions and international relations. This international angle is reflected in the European Policies Research Centre (EPRC) which conducts comparative research on public policy. Meanwhile, the Centre for Energy Policy provides independent expertise on energy, working across multidisciplinary groups to shape policy for a low carbon economy.

Explore the Open Access research of the School of Government & Public Policy. Or explore all of Strathclyde's Open Access research...

The complex degradation and metabolism of quercetin in rat hepatocyte incubations

Omar, Khaled and Grant, M. Helen and Henderson, Catherine and Watson, David George (2014) The complex degradation and metabolism of quercetin in rat hepatocyte incubations. Xenobiotica, 44 (12). pp. 1074-1082. ISSN 0049-8254

PDF (Omar-etal-Xenobiotica-2014-The-complex-degradation-and-metabolism-of-quercetin)
Accepted Author Manuscript

Download (1MB)| Preview


    1. The current study demonstrated that there is still new information to be obtained on the chemical and biological transformation of the widely studied flavonoid quercetin. 2. In rat hepatocytes, 35 metabolites of quercetin were observed by using high-resolution mass spectrometry. The metabolites included glucuronides, sulfates, mixed sulfate/glucuronide metabolites and methylated versions of these metabolites. 3. Several metabolites were formed from chemical degradation products of quercetin which were found to form in Krebs–Henseleit (KH) buffer, degradants of quercetin were also formed in the buffer under the conditions used for hepatocyte incubations. 4. The degradants and metabolites of quercetin were characterized by using high-resolution MS2. It was observed that the glutathione (GSH) conjugates of quercetin formed in large amounts in ammonium bicarbonate solution although the pattern of conjugates formed was different from that observed in hepatocytes suggesting some degree on enzymatic control on GSH conjugate formation in the hepatocyte incubations. 5. GSH conjugates were not formed when GSH was included in incubations of quercetin in KH buffer alone and only small amounts of quercetin degradation occurred. Instead, GSH was extensively converted into GSSG, thus presumably reducing the levels of oxygen in the incubation thus preventing quercetin degradation.