Picture of sea vessel plough through rough maritime conditions

Innovations in marine technology, pioneered through Open Access research...

Strathprints makes available scholarly Open Access content by researchers in the Department of Naval Architecture, Ocean & Marine Engineering based within the Faculty of Engineering.

Research here explores the potential of marine renewables, such as offshore wind, current and wave energy devices to promote the delivery of diverse energy sources. Expertise in offshore hydrodynamics in offshore structures also informs innovations within the oil and gas industries. But as a world-leading centre of marine technology, the Department is recognised as the leading authority in all areas related to maritime safety, such as resilience engineering, collision avoidance and risk-based ship design. Techniques to support sustainability vessel life cycle management is a key research focus.

Explore the Open Access research of the Department of Naval Architecture, Ocean & Marine Engineering. Or explore all of Strathclyde's Open Access research...

Investigation of optimum crew transfer vessel fleet for offshore wind farm maintenance operations

Dalgic, Yalcin and Lazakis, Iraklis and Turan, Osman (2015) Investigation of optimum crew transfer vessel fleet for offshore wind farm maintenance operations. Wind Engineering, 39 (1). pp. 31-52. ISSN 0309-524X

[img] PDF (Dalgic-etal-WE-2015-Investigation-of-optimum-crew-transfer-vessel-fleet)
Dalgic_etal_WE_2015_Investigation_of_optimum_crew_transfer_vessel_fleet.pdf
Final Published Version

Download (4MB)

Abstract

The offshore wind industry, which aims to reduce the operational costs, usually achieved through learning curves and supply chain improvements, has seen drastic cost increase over the last five years. In order to sustain the competitiveness of the offshore wind industry against other renewable energy sources, the cost of offshore wind needs to come down to today's onshore cost. This cost reduction target can be achieved through optimising the offshore related operations which contribute the most to the operating expenditures (OPEX) of the offshore wind farms. In this paper, the investigation of optimum crew transfer vessel fleet, which indicates the influence of fleet size and characteristics of the vessels involved in the operations, is introduced with a focus on power production, total cost of the Operation and Maintenance (O&M) and revenue loss. A time domain Monte-Carlo approach is adopted while taking into consideration the climate parameters, failure characteristics of turbine components, the specification of crew transfer vessels, and the composition of vessel fleet. Through this extensive study, it is concluded the O&M related costs can be reduced significantly while the availability and the productivity of the turbines can be increased by optimising the use of the O&M vessel fleet in terms of fleet size and vessel capabilities.