Picture of mobile phone running fintech app

Fintech: Open Access research exploring new frontiers in financial technology

Strathprints makes available Open Access scholarly outputs by the Department of Accounting & Finance at Strathclyde. Particular research specialisms include financial risk management and investment strategies.

The Department also hosts the Centre for Financial Regulation and Innovation (CeFRI), demonstrating research expertise in fintech and capital markets. It also aims to provide a strategic link between academia, policy-makers, regulators and other financial industry participants.

Explore all Strathclyde Open Access research...

An economic impact metric for evaluating wave height forecasters for offshore wind maintenance access

Catterson, V.M. and McMillan, D. and Dinwoodie, I. and Revie, M. and Dowell, J. and Quigley, J. and Wilson, K. (2016) An economic impact metric for evaluating wave height forecasters for offshore wind maintenance access. Wind Energy, 19 (2). pp. 199-212. ISSN 1095-4244

PDF (Catterson-etal-WE-2015-An-economic-impact-metric-for-evaluating-wave-hight)
Accepted Author Manuscript

Download (708kB) | Preview


This paper demonstrates that wave height forecasters chosen on statistical quality metrics result in sub-optimal decision support for offshore wind farm maintenance. Offshore access is constrained by wave height, but the majority of approaches to evaluating the effectiveness of a wave height forecaster utilize overall accuracy or error rates. This paper introduces a new metric more appropriate to the wind industry, which considers the economic impact of an incorrect forecast above or below critical wave height boundaries. The paper describes a process for constructing a value criteria where the implications between forecasting error and economic consequences are explicated in terms of opportunity costs and realized maintenance costs. A comparison between nine forecasting techniques for modeling and predicting wave heights based on historical data, including an ensemble aggregator, is described demonstrating that the performance ranking of forecasters is sensitive to the evaluation criteria. The results highlight the importance of appropriate metrics for wave height prediction specific to the wind industry, and the limitations of current models that minimize a metric that does not support decision making. With improved ability to forecast weather windows, maintenance scheduling is subject to less uncertainty, hence reducing costs related to vessel dispatch, and lost energy due to downtime.